Deutsches Institut für Bautechnik

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Kolonnenstraße 30 B D-10829 Berlin Tel.: +49 30 78730-0 Fax: +49 30 78730-320 E-Mail: dibt@dibt.de www.dibt.de

Mitglied der EOTA

Member of EOTA

Europäische Technische Zulassung ETA-06/0155

Handelsbezeichnung Trade name MKT Bolzenanker B A4 und B HCR MKT Wedge anchor B A4 and B HCR

Zulassungsinhaber Holder of approval

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Zulassungsgegenstand und Verwendungszweck

Kraftkontrolliert spreizende Dübel aus nichtrostendem Stahl in den Größen 30 M6 und 40 M6 für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen in Beton

Generic type and use of construction product

Torque-controlled expansion anchor made of stainless steel of sizes 30 M6 and 40 M6 for multiple use for non-structural applications in

concrete

Geltungsdauer: Validity: vom from

bis to 17. Mai 2013

17. Mai 2018

Herstellwerk

Manufacturing plant

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach

Diese Zulassung umfasst This Approval contains 13 Seiten einschließlich 5 Anhänge 13 pages including 5 annexes

Diese Zulassung ersetzt This Approval replaces ETA-06/0155 mit Geltungsdauer vom 27.07.2011 bis 27.07.2016 ETA-06/0155 with validity from 27.07.2011 to 27.07.2016

Seite 2 von 13 | 17. Mai 2013

I RECHTSGRUNDLAGEN UND ALLGEMEINE BESTIMMUNGEN

- Diese europäische technische Zulassung wird vom Deutschen Institut für Bautechnik erteilt in Übereinstimmung mit:
 - der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechtsund Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte¹, geändert durch die
 Richtlinie 93/68/EWG des Rates² und durch die Verordnung (EG) Nr. 1882/2003 des
 Europäischen Parlaments und des Rates³;
 - dem Gesetz über das In-Verkehr-Bringen von und den freien Warenverkehr mit Bauprodukten zur Umsetzung der Richtlinie 89/106/EWG des Rates vom 21. Dezember 1988 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über Bauprodukte und anderer Rechtsakte der Europäischen Gemeinschaften (Bauproduktengesetz - BauPG) vom 28. April 1998⁴, zuletzt geändert durch Art. 2 des Gesetzes vom 8. November 2011⁵;
 - den Gemeinsamen Verfahrensregeln für die Beantragung, Vorbereitung und Erteilung von europäischen technischen Zulassungen gemäß dem Anhang zur Entscheidung 94/23/EG der Kommission⁶;
 - der Leitlinie für die europäische technische Zulassung für "Metalldübel zur Verankerung im Beton - Teil 6: Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen", ETAG 001-06.
- Das Deutsche Institut für Bautechnik ist berechtigt zu prüfen, ob die Bestimmungen dieser europäischen technischen Zulassung erfüllt werden. Diese Prüfung kann im Herstellwerk erfolgen. Der Inhaber der europäischen technischen Zulassung bleibt jedoch für die Konformität der Produkte mit der europäischen technischen Zulassung und deren Brauchbarkeit für den vorgesehenen Verwendungszweck verantwortlich.
- Diese europäische technische Zulassung darf nicht auf andere als die auf Seite 1 aufgeführten Hersteller oder Vertreter von Herstellern oder auf andere als die auf Seite 1 dieser europäischen technischen Zulassung hinterlegten Herstellwerke übertragen werden.
- Das Deutsche Institut für Bautechnik kann diese europäische technische Zulassung widerrufen, insbesondere nach einer Mitteilung der Kommission aufgrund von Art. 5 Abs. 1 der Richtlinie 89/106/EWG.
- Diese europäische technische Zulassung darf auch bei elektronischer Übermittlung nur ungekürzt wiedergegeben werden. Mit schriftlicher Zustimmung des Deutschen Instituts für Bautechnik kann jedoch eine teilweise Wiedergabe erfolgen. Eine teilweise Wiedergabe ist als solche zu kennzeichnen. Texte und Zeichnungen von Werbebroschüren dürfen weder im Widerspruch zu der europäischen technischen Zulassung stehen noch diese missbräuchlich verwenden.
- Die europäische technische Zulassung wird von der Zulassungsstelle in ihrer Amtssprache erteilt. Diese Fassung entspricht vollständig der in der EOTA verteilten Fassung. Übersetzungen in andere Sprachen sind als solche zu kennzeichnen.
- Amtsblatt der Europäischen Gemeinschaften L 40 vom 11. Februar 1989, S. 12
- Amtsblatt der Europäischen Gemeinschaften L 220 vom 30. August 1993, S. 1
- Amtsblatt der Europäischen Union L 284 vom 31. Oktober 2003, S. 25
- Bundesgesetzblatt Teil I 1998, S. 812
- 5 Bundesgesetzblatt Teil I 2011, S. 2178
- Amtsblatt der Europäischen Gemeinschaften L 17 vom 20. Januar 1994, S. 34

Seite 3 von 13 | 17. Mai 2013

II BESONDERE BESTIMMUNGEN DER EUROPÄISCHEN TECHNISCHEN ZULASSUNG

1 Beschreibung des Bauprodukts und des Verwendungszwecks

1.1 Beschreibung des Produkts

Der MKT Bolzenanker B A4 und B HCR in den Größen 30 M6 und 40 M6 ist ein Dübel aus nichtrostendem oder hochkorrosionsbeständigem Stahl, der in ein Bohrloch gesetzt und durch kraftkontrollierte Verspreizung verankert wird.

Im Anhang 1 sind Produkt und Anwendungsbereich dargestellt.

1.2 Verwendungszweck

Der Dübel ist für Verwendungen vorgesehen, bei denen Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderung 4 der Richtlinie 89/106/EWG zu erfüllen sind und bei denen ein Versagen des zu befestigenden Bauteils eine unmittelbare Gefahr für Leben oder Gesundheit von Menschen darstellt. Der Dübel darf nur für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen verwendet werden. Die Definition der Mehrfachbefestigung für die Mitgliedsstaaten ist im informativen Anhang 1 der ETAG 001, Teil 6 angegeben.

Der Dübel darf für Verankerungen, an die Anforderungen an die Feuerwiderstandsfähigkeit gestellt werden, verwendet werden.

Der Dübel darf nur unter statischer oder quasi-statischer Belastung in bewehrtem oder unbewehrtem Normalbeton der Festigkeitsklasse von mindestens C20/25 und höchstens C50/60 nach EN 206-1:2000-12 verwendet werden. Er darf im gerissenen oder ungerissenen Beton verankert werden.

MKT Bolzenanker B A4 aus nichtrostendem Stahl:

Der Dübel aus nichtrostendem Stahl 1.4401, 1.4404, 1.4571 und 1.4578 darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien (einschließlich Industrieatmosphäre und Meeresnähe) oder in Feuchträumen verwendet werden, wenn keine besonders aggressiven Bedingungen vorliegen. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

MKT Bolzenanker B HCR aus hochkorrosionsbeständigem Stahl:

Der Dübel aus hochkorrosionsbeständigem Stahl 1.4529 und 1.4565 darf in Bauteilen unter den Bedingungen trockener Innenräume sowie auch im Freien, in Feuchträumen oder in besonders aggressiven Bedingungen verwendet werden. Zu diesen besonders aggressiven Bedingungen gehören, z. B. ständiges, abwechselndes Eintauchen in Seewasser oder der Bereich der Spritzzone von Seewasser, chlorhaltige Atmosphäre in Schwimmbadhallen oder Atmosphäre mit extremer chemischer Verschmutzung (z. B. bei Rauchgas-Entschwefelungsanlagen oder Straßentunneln, in denen Enteisungsmittel verwendet werden).

Die Bestimmungen dieser europäischen technischen Zulassung beruhen auf einer angenommenen Nutzungsdauer des Dübels von 50 Jahren. Die Angaben über die Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich als Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks zu betrachten.

Seite 4 von 13 | 17. Mai 2013

2 Merkmale des Produkts und Nachweisverfahren

2.1 Merkmale des Produkts

Der Dübel entspricht den Zeichnungen und Angaben in Anhang 2. Die in Anhang 2 nicht angegebenen Werkstoffkennwerte, Abmessungen und Toleranzen des Dübels müssen den in der technischen Dokumentation⁷ dieser europäischen technischen Zulassung festgelegten Angaben entsprechen.

In Bezug auf die Anforderungen des Brandschutzes kann angenommen werden, dass der Dübel die Anforderungen der Brandverhaltensklasse A1 gemäß den Vorschriften der Entscheidung 96/603/EG der europäischen Kommission (in geänderter Fassung 2000/605/EG), erfüllt.

Die charakteristischen Werte für die Bemessung der Verankerungen sind in Anhang 5, Tabelle 4 angegeben. Die charakteristischen Werte für die Bemessung der Verankerungen in Bezug auf die Feuerwiderstandsfähigkeit sind in Anhang 5, Tabelle 5 angegeben. Sie gelten für die Verwendung in einem System, das den Anforderungen einer bestimmten Feuerwiderstandsklasse genügen muss.

Jeder Dübel ist mit dem Werkskennzeichen, der Dübelbezeichnung, der Gewindegröße und der maximalen Dicke des Anbauteils gemäß Anhang 2 gekennzeichnet. Jeder Dübel aus nichtrostendem Stahl A4 ist durch den Zusatz "A4" und jeder Dübel aus hochkorrosionsbeständigem Stahl ist durch den Zusatz "HCR" gekennzeichnet.

Der Dübel darf nur als Befestigungseinheit verpackt und geliefert werden.

2.2 Nachweisverfahren

Die Beurteilung der Brauchbarkeit des Dübels für den vorgesehenen Verwendungszweck hinsichtlich der Anforderungen an die Nutzungssicherheit im Sinne der wesentlichen Anforderungen 4 erfolgte in Übereinstimmung mit der "Leitlinie für die Europäische Technische Zulassung für Metalldübel zur Verankerung im Beton", Teil 1 "Dübel - Allgemeines" und Teil 6 "Dübel für die Verwendung als Mehrfachbefestigung von nichttragenden Systemen".

Die Beurteilung des Dübels für den vorgesehenen Verwendungszweck in Bezug auf die Feuerwiderstandsfähigkeit erfolgte entsprechend dem Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit".

In Ergänzung zu den spezifischen Bestimmungen dieser europäischen technischen Zulassung, die sich auf gefährliche Stoffe beziehen, können die Produkte im Geltungsbereich dieser Zulassung weiteren Anforderungen unterliegen (z. B. umgesetzte europäische Gesetzgebung und nationale Rechts- und Verwaltungsvorschriften). Um die Bestimmungen der Bauproduktenrichtlinie zu erfüllen, müssen ggf. diese Anforderungen ebenfalls eingehalten werden.

Die technische Dokumentation dieser europäischen technischen Zulassung ist beim Deutschen Institut für Bautechnik hinterlegt und, soweit diese für die Aufgaben der in das Verfahren der Konformitätsbescheinigung eingeschalteten zugelassenen Stellen bedeutsam ist, den zugelassenen Stellen auszuhändigen.

Seite 5 von 13 | 17. Mai 2013

3 Bewertung und Bescheinigung der Konformität und CE-Kennzeichnung

3.1 System der Konformitätsbescheinigung

Gemäß Entscheidung 97/161/EG der Europäischen Kommission⁸ ist das System 2(ii) (bezeichnet als System 2+) der Konformitätsbescheinigung anzuwenden.

Dieses System der Konformitätsbescheinigung ist im Folgenden beschrieben:

System 2+: Konformitätserklärung des Herstellers für das Produkt aufgrund von:

- (a) Aufgaben des Herstellers:
 - (1) Erstprüfung des Produkts;
 - (2) werkseigener Produktionskontrolle;
 - (3) Prüfung von im Werk entnommenen Proben nach festgelegtem Prüfplan.
- (b) Aufgaben der zugelassenen Stelle:
 - (4) Zertifizierung der werkseigenen Produktionskontrolle aufgrund von:
 - Erstinspektion des Werkes und der werkseigenen Produktionskontrolle;
 - laufender Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle.

Anmerkung: Zugelassene Stellen werden auch "notifizierte Stellen" genannt.

3.2 Zuständigkeiten

3.2.1 Aufgaben des Herstellers

3.2.1.1 Werkseigene Produktionskontrolle

Der Hersteller muss eine ständige Eigenüberwachung der Produktion durchführen. Alle vom Hersteller vorgegebenen Daten, Anforderungen und Vorschriften sind systematisch in Form schriftlicher Betriebs- und Verfahrensanweisungen festzuhalten. Die werkseigene Produktionskontrolle hat sicherzustellen, dass das Produkt mit dieser europäischen technischen Zulassung übereinstimmt.

Der Hersteller darf nur Ausgangsstoffe/ Rohstoffe/ Bestandteile verwenden, die in der technischen Dokumentation dieser europäischen technischen Zulassung aufgeführt sind.

Die werkseigene Produktionskontrolle muss mit dem Prüfplan, der Teil der technischen Dokumentation dieser europäischen technischen Zulassung ist, übereinstimmen. Der Prüfplan ist im Zusammenhang mit dem vom Hersteller betriebenen werkseigenen Produktionskontrollsystem festgelegt und beim Deutschen Institut für Bautechnik hinterlegt.⁹

Die Ergebnisse der werkseigenen Produktionskontrolle sind festzuhalten und in Übereinstimmung mit den Bestimmungen des Prüfplans auszuwerten.

3.2.1.2 Sonstige Aufgaben des Herstellers

Der Hersteller hat auf der Grundlage eines Vertrags eine Stelle, die für die Aufgaben nach Abschnitt 3.1 für den Bereich der Dübel zugelassen ist, zur Durchführung der Maßnahmen nach Abschnitt 3.2.2 einzuschalten. Hierfür ist der Prüfplan nach den Abschnitten 3.2.1.1 und 3.2.2 vom Hersteller der zugelassenen Stelle vorzulegen.

Der Hersteller hat eine Konformitätserklärung abzugeben mit der Aussage, dass das Bauprodukt mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Amtsblatt der Europäischen Gemeinschaften L 67 vom 03.02.1997

Der Prüfplan ist ein vertraulicher Bestandteil der Dokumentation dieser europäischen technischen Zulassung und wird nur der das Konformitätsbescheinigungsverfahren eingeschalteten zugelassenen Stelle ausgehändigt. Siehe Abschnitt 3.2.2.

Seite 6 von 13 | 17. Mai 2013

3.2.2 Aufgaben der zugelassenen Stellen

Die zugelassene Stelle hat die folgenden Aufgaben in Übereinstimmung mit dem Prüfplan durchzuführen:

- Erstinspektion des Werks und der werkseigenen Produktionskontrolle,
- laufende Überwachung, Beurteilung und Anerkennung der werkseigenen Produktionskontrolle,

Die zugelassene Stelle hat die wesentlichen Punkte ihrer oben angeführten Maßnahmen festzuhalten und die erzielten Ergebnisse und die Schlussfolgerungen in einem schriftlichen Bericht zu dokumentieren.

Die vom Hersteller eingeschaltete zugelassene Zertifizierungsstelle hat ein EG-Konformitätszertifikat mit der Aussage zu erteilen, dass die werkseigene Produktionskontrolle mit den Bestimmungen dieser europäischen technischen Zulassung übereinstimmt.

Wenn die Bestimmungen der europäischen technischen Zulassung und des zugehörigen Prüfplans nicht mehr erfüllt sind, hat die Zertifizierungsstelle das Konformitätszertifikat zurückzuziehen und unverzüglich das Deutsche Institut für Bautechnik zu informieren.

3.3 CE-Kennzeichnung

Die CE-Kennzeichnung ist auf jeder Verpackung der Dübel anzubringen. Hinter den Buchstaben "CE" sind ggf. die Kennnummer der zugelassenen Zertifizierungsstelle anzugeben sowie die folgenden zusätzlichen Angaben zu machen:

- Name und Anschrift des Herstellers (für die Herstellung verantwortliche juristische Person),
- die letzten beiden Ziffern des Jahres, in dem die CE-Kennzeichnung angebracht wurde,
- Nummer des EG-Konformitätszertifikats für die werkseigene Produktionskontrolle,
- Nummer der europäischen technischen Zulassung,
- Nummer der Leitlinie für die europäische technische Zulassung,
- Nutzungskategorie (ETAG 001-6),
- Größe.

4 Annahmen, unter denen die Brauchbarkeit des Produkts für den vorgesehenen Verwendungszweck positiv beurteilt wurde

4.1 Herstellung

Die europäische technische Zulassung wurde für das Produkt auf der Grundlage abgestimmter Daten und Informationen erteilt, die beim Deutschen Institut für Bautechnik hinterlegt sind und der Identifizierung des beurteilten und bewerteten Produkts dienen. Änderungen am Produkt oder am Herstellungsverfahren, die dazu führen könnten, dass die hinterlegten Daten und Informationen nicht mehr korrekt sind, sind vor ihrer Einführung dem Deutschen Institut für Bautechnik mitzuteilen. Das Deutsche Institut für Bautechnik wird darüber entscheiden, ob sich solche Änderungen auf die Zulassung und folglich auf die Gültigkeit der CE-Kennzeichnung auf Grund der Zulassung auswirken oder nicht, und ggf. feststellen, ob eine zusätzliche Beurteilung oder eine Änderung der Zulassung erforderlich ist.

Seite 7 von 13 | 17. Mai 2013

4.2 Bemessung der Verankerungen

Die Brauchbarkeit des Dübels ist unter folgenden Voraussetzungen gegeben:

Die Bemessung der Verankerungen erfolgt in Übereinstimmung mit der

 "Leitlinie für die europäische technische Zulassung für Metalldübel zur Verankerung im Beton", Anhang C, Verfahren B

oder in Übereinstimmung mit dem

- CEN/TS 1992-4:2009, Bemessungsmethode B

unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Betonbaus erfahrenen Ingenieurs.

Der Dübel darf nur für die Mehrfachbefestigung von nichttragenden Systemen verwendet werden, die Definition der Mehrfachbefestigung der Mitgliedsstaaten ist im informativen Anhang 1 von ETAG 001 Teil 6 angegeben.

Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen angefertigt.

Auf den Konstruktionszeichnungen ist die Lage des Dübels (z. B. Lage des Dübels zur Bewehrung oder zu den Auflagern) angegeben.

Bei der Bemessung von Verankerungen unter Brandbeanspruchung sind die Bestimmungen des Technical Report TR 020 "Beurteilung von Verankerungen im Beton hinsichtlich der Feuerwiderstandsfähigkeit" zu beachten. Die maßgebenden charakteristischen Werte sind in Anhang 4 angegeben. Das Bemessungsverfahren gilt für eine einseitige Brandbeanspruchung des Bauteils. Bei mehrseitiger Brandbeanspruchung kann das Bemessungsverfahren nur angewendet werden, wenn der Randabstand des Dübels $c \ge 300 \text{ mm}$ beträgt.

4.3 Einbau der Dübel

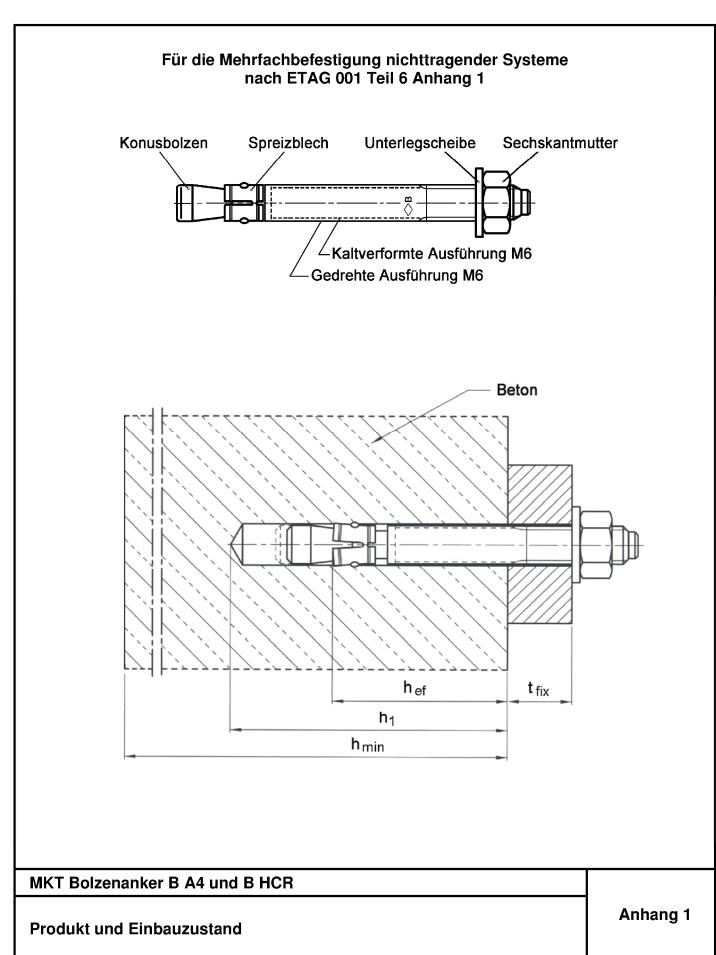
Von der Brauchbarkeit des Dübels kann nur dann ausgegangen werden, wenn folgende Einbaubedingungen eingehalten sind:

- Einbau durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters,
- Einbau nur so, wie vom Hersteller geliefert, ohne Austausch der einzelnen Teile,
- Einbau nach den Angaben des Herstellers und den Konstruktionszeichnungen mit den angegebenen Werkzeugen,
- Überprüfung vor dem Setzen des Dübels, ob die Festigkeitsklasse des Betons, in den der Dübel gesetzt werden soll, nicht niedriger ist als die Festigkeitsklasse des Betons, für den die charakteristischen Tragfähigkeiten gelten,
- Einwandfreie Verdichtung des Betons, z. B. keine signifikanten Hohlräume,
- Einhaltung der festgelegten Rand- und Achsabstände ohne Minustoleranzen,
- Anordnung der Bohrlöcher ohne Beschädigung der Bewehrung,
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht, oder in geringerem Abstand, wenn die Fehlbohrung mit hochfestem Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt,
- Reinigung des Bohrlochs vom Bohrmehl,
- Einhaltung der effektiven Verankerungstiefe. Diese Bedingung ist erfüllt, wenn die vorhandene Dicke des anzuschließenden Bauteils nicht größer ist als die am Dübel geprägte maximale Anbauteildicke gemäß Anhang 2,
- Aufbringen des im Anhang 3 angegebenen Drehmoments mit einem überprüften Drehmomentenschlüssel.

Seite 8 von 13 | 17. Mai 2013

5 Verpflichtungen des Herstellers

Es ist Aufgabe des Herstellers, dafür zu sorgen, dass alle Beteiligten über die Besonderen Bestimmungen nach den Abschnitten 1 und 2 einschließlich der Anhänge, auf die verwiesen wird, sowie den Abschnitten 4.2 und 4.3 unterrichtet werden. Diese Information kann durch Wiedergabe der entsprechenden Teile der europäischen technischen Zulassung erfolgen. Darüber hinaus sind alle Einbaudaten auf der Verpackung und/oder einem Beipackzettel, vorzugsweise bildlich, anzugeben.


Es sind mindestens folgende Angaben zu machen:

- Bohrerdurchmesser.
- Gewindedurchmesser,
- maximale Dicke des Anbauteils,
- Mindestverankerungstiefe,
- Mindest-Bohrlochtiefe,
- Drehmoment,
- Angaben über den Einbauvorgang einschließlich Reinigung des Bohrlochs, vorzugsweise durch bildliche Darstellung,
- Hinweis auf erforderliche Setzwerkzeuge,
- Herstelllos.

Alle Angaben müssen in deutlicher und verständlicher Form erfolgen.

Uwe Bender Abteilungsleiter Beglaubigt

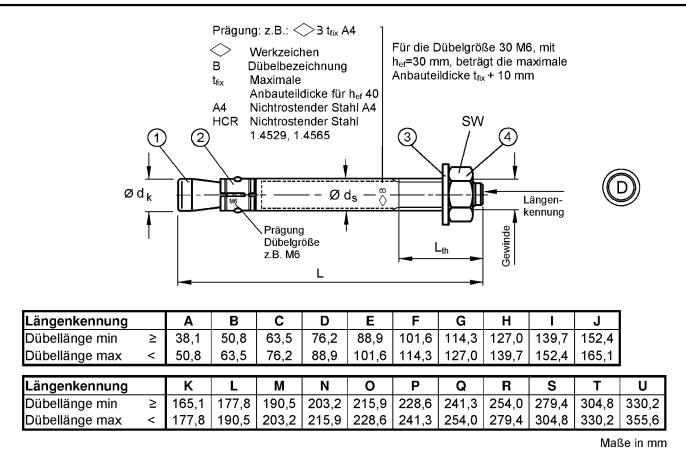


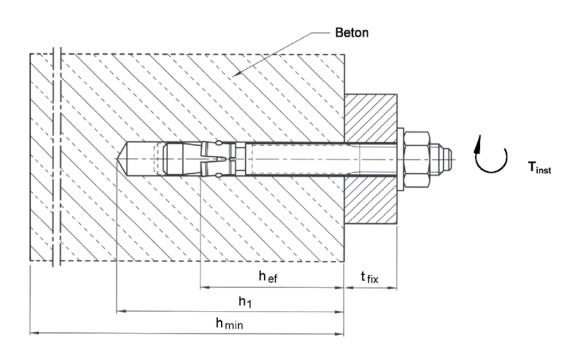
Tabelle 1: Dübelabmessungen in mm

Dübelgröße	t _{fix}	$\emptyset d_k$	$\emptyset d_s$	L th	L	[min - max]	SW
30 M6	1 – 40	6	6 / 5,3 ²⁾	$16 \leq L_{th} \leq 35$	$t_{fix}^{1)} + 47,4$	48 – 347	10
40 M6	1 – 40	6	6 / 5,3 ²⁾	16 ≤ L _{th} ≤ 35	$t_{fix}^{(1)} + 57,4$	58 – 357	10

Es sind verschiedene Anbauteildicken möglich

Tabelle 2: Benennung und Werkstoffe

Teil	Benennung	Nichtrostender Stahl A4	Hochkorrosionsbeständiger Stahl (HCR)
1	Konusbolzen	Nichtrostender Stahl 1.4401, 1.4404, 1.4571, 1.4578, EN 10088, beschichtet	Hochkorrosionsbeständiger Stahl 1.4529, 1.4565, EN 10088, beschichtet
2	Spreizblech	Nichtrostender Stahl 1.4401, 1.4571, EN 10088	Nichtrostender Stahl 1.4401, 1.4571, EN 10088
3	Unterlegscheibe nach EN ISO 7089, oder EN ISO 7093, oder EN ISO 7094	Nichtrostender Stahl 1.4401, 1.4571, EN 10088	Nichtrostender Stahl 1.4529, 1.4565, EN 10088
4	Sechskantmutter DIN 934	ISO 3506, A4-70, nichtrostender Stahl 1.4401, 1.4571, EN 10088, beschichtet	ISO 3506, Festigkeitsklasse 70, hochkorrosionsbeständiger Stahl 1.4529, 1.4565, EN 10088, beschichtet

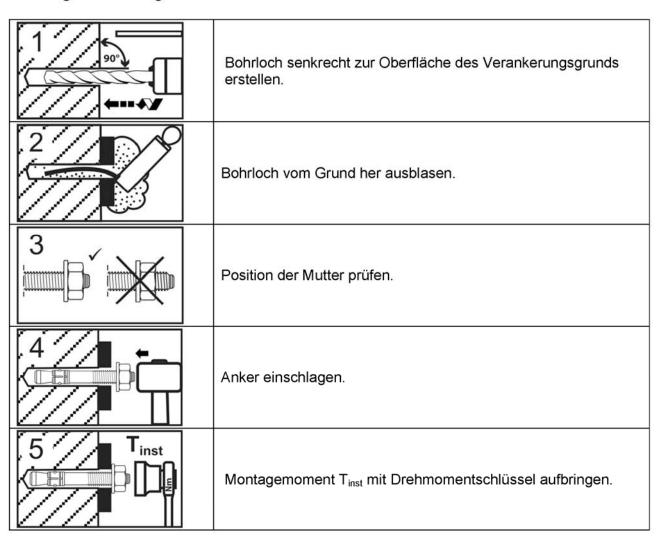

MKT Bolzenanker B A4 und B HCR

Dübelabmessungen, Benennung und Werkstoffe Anhang 2

²⁾ Kaltverformte Ausführung

Tabelle 3: Montage- und Dübelkennwerte

Dübelgröße	30 M6	40 M6		
Bohrernenndurchmesser	$d_0 =$	[mm]	6	6
Bohrerschneidendurchmesser	$d_{cut} \leq$	[mm]	6,40	6,40
Drehmoment	T _{inst} =	[Nm]	8	8
Bohrlochtiefe	$h_1 \geq$	[mm]	45	55
Effektive Verankerungstiefe	$h_{\text{ef}}{\geq}$	[mm]	30	40
Mindestbauteildicke	h _{min}	[mm]	80	80
Minimaler Achsabstand	S _{min}	[mm]	50	50
Minimaler Randabstand	C _{min}	[mm]	50	50
Durchgangsloch im anzuschließenden Bauteil	$d_{f} \! \leq \!$	[mm]	7	7


MKT Bolzenanker B A4 und B HCR

Montage- und Dübelkennwerte

Anhang 3

Montageanweisung

MKT Bolzenanker B A4 und B HCR	
Montageanweisung	Anhang 4

Tabelle 4: Charakteristische Werte für die Widerstände, Bemessungsmethode B

Dübelgröße	30 M6	40 M6		
Alle Lastrichtungen				
Charakteristische Tragfähigkeit in C20/25 bis C50/60	F ⁰ _{Rk}	[kN]	5	6
Teilsicherheitsbeiwert	γм	[-]	2,16	1,8
Bemessungswert des Widerstandes in C20/25 bis C50/60	F ⁰ _{Rd}	[kN]	2,3	3,3
Achsabstand	S _{cr}	[mm]	260	370
Randabstand	C _{cr}	[mm]	130	185
Stahlversagen mit Hebelarm				
Charakteristisches Biegemoment	M ⁰ _{Rk,s} 1)	[Nm]	10	10
Teilsicherheitsbeiwert	γ̂Ms	[-]	1,25	1,25

Charakteristisches Biegemoment M⁰_{Rk,s} in Gleichung (5.5) in ETAG 001, Anhang C bzw. Gleichung (D.5) CEN/TS 1992-4-1:2009

Der Dübel darf nur für Mehrfachbefestigungen nichttragender Bauteile verwendet werden. Die Definition für Mehrfachbefestigung nach den Vorgaben der Mitgliedsstaaten findet sich im Anhang 1 der ETAG 001, Teil 6

Tabelle 5: Charakteristische Werte unter Brandbeanspruchung in Beton C20/25 bis C50/60, Bemessungsmethode B

Dübelgröße				30 M6 40 M6	
Feuer- widerstandsklasse	Für alle Lastrichtungen				
R 30	Charakteristische Tragfähigkeit	$F^0_{Rk,fi30}$	[kN]	0,6	
17.30	Charakteristisches Biegemoment	$M^0_{Rk,s,fi30}$	[Nm]	0,5	
R 60	Charakteristische Tragfähigkeit	$F^0_{Rk,fi60}$	[kN]	0,5	
	Charakteristisches Biegemoment	$M^0_{Rk,s,fi60}$	[Nm]	0,4	
R 90	Charakteristische Tragfähigkeit	$F^0_{Rk,fi90}$	[kN]	0,3	
N 90	Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi90}	[Nm]	0,3	
R 120	Charakteristische Tragfähigkeit	F ⁰ _{Rk,fi120}	[kN]	0,3	
K 120	Charakteristisches Biegemoment	M ⁰ _{Rk,s,fi120}	[Nm]	0,2	
	Achsabstand	S _{cr,fi}	[mm]	4 h _{ef}	
		S _{min}	[mm]	50	
R 30	Randabstand	C _{cr,fi}	[mm]	2 h _{ef}	
bis R 120		C _{min}	[mm]	50	
	Teilsicherheitsbeiwert	γ _{M,fi}	[-]	1,0	
	Bei Brandbeanspruchung von mehr als einer Seite, muss der Randabstand des Dübels mehr als 300 mm betragen.				

MKT Bolzenanker B A4 und B HCR

Charakteristische Werte unter Normaltemperatur und Brandbeanspruchung, Bemessungsmethode B

Anhang 5